

UNIVERSITY OF ALBERTA

¹Mila – Quebec Al Institute

²McGill University

³University of Alberta

Kamyar Azizzadenesheli ⁶

⁴Duke University

⁵Caltech ⁶Nvidia

Motivation

- Explorations techniques are crucial for an agent to be able to solve novel complex problems.
- Thompson sampling based on Laplace approximation is not a good estimation for the posterior distribution when the value function has more general forms than linearity.
- Sampling from a Gaussian distribution with general covariance matrix in high dimensional problem is computationally inefficient.

Highlights

- We propose a practical and efficient online RL algorithm Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI), which only needs to perform noisy gradient descent updates for exploration.
- We theoretically prove that **LMC-LSVI** achieves a $\widetilde{O}(d^{3/2}H^{3/2}\sqrt{T})$ regret under linear MDP settings, where d is the dimension of the feature mapping, H is the planning horizon, and T is the total number of steps.
- We further propose, Adam Langevin Monte Carlo Deep Q-Network (Adam LMCDQN), a preconditioned variant of LMC-LSVI based on the Adam optimizer, which provides improved empirical performance.

Setting

- We consider online finite horizon MDPs (S, A, H, \mathbb{P}, r) , where S is the state space, A is the action space, H is the horizon length, \mathbb{P} is the state transition kernel and r is the reward function.
- Value function and Action-value function of policy π :

$$V_h^{\pi}(x) = \mathbb{E}_{\pi} \left[\sum_{h'=h}^{H} r_{h'}(x_{h'}, a_{h'}) \, \big| \, x_h = x \right], \qquad Q_h^{\pi}(x, a) = \mathbb{E}_{\pi} \left[\sum_{h'=h}^{H} r_{h'}(x_{h'}, a_{h'}) \, \big| \, x_h = x, a_h = a \right].$$

Any algorithm can be measured by it's regret

$$\operatorname{Regret}(K) = \sum_{k=1}^{K} \left[V_1^*(x_1^k) - V_1^{\pi^k}(x_1^k) \right].$$

Langevin Monte Carlo for Reinforcement Learning

Define a general loss function

$$L_h^k(w_h) = \sum_{\tau=1}^{k-1} \left[r_h(x_h^{\tau}, a_h^{\tau}) + \max_{a \in \mathcal{A}} Q_{h+1}^k(x_{h+1}^{\tau}, a) - Q(w_h; \phi(x_h^{\tau}, a_h^{\tau})) \right]^2 + \lambda \|w_h\|^2$$

Langevin Monte Carlo update:

$$w_{k+1} = w_k - \eta_k \nabla L(w_k) + \sqrt{2\eta_k \beta^{-1}} \epsilon_k,$$

- It approximately samples from $\pi_k \propto \exp{(-\beta L_k(w))}$.
- When Q is linear, $\pi_k = \mathcal{N}(\widehat{w}_k, \beta^{-1}\Lambda_k^{-1})$ where $\Lambda_k = \sum_{\tau=1}^{k-1} \phi(x_h^\tau, a_h^\tau) \phi(x_h^\tau, a_h^\tau)^\top + \lambda I$.
- LMC-LSVI approximately samples from the true posterior distribution.
- LMC-LSVI is computationally efficient due to
- it only needs to sample from isotropic Gaussian $\mathcal{N}(0,I)$.
- it only needs to perform noisy gradient descent updates.

Algorithm

```
Algorithm 1 Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI)

1: Input: step sizes \{\eta_k > 0\}_{k \geq 1}, inverse temperature \{\beta_k\}_{k \geq 1}, loss function L_k(w).

2: Initialize w_h^{1,0} = \mathbf{0} for h \in [H], J_0 = 0.

3: for episode k = 1, 2, \dots, K do

4: Receive the initial state s_h^k.

5: for step h = H, H - 1, \dots, 1 do

6: w_h^{k,0} = w_h^{k-1,J_{k-1}}

7: for j = 1, \dots, J_k do

8: \epsilon_h^{k,j} \sim \mathcal{N}(0,I)

9: w_h^{k,j} = w_h^{k,j-1} - \eta_k \nabla L_h^k(w_h^{k,j-1}) + \sqrt{2\eta_k \beta_k^{-1}} \epsilon_h^{k,j}

10: end for

11: Q_h^k(\cdot,\cdot) \leftarrow \min\{Q(w_h^{k,J_k};\phi(\cdot,\cdot)), H - h + 1\}^+

12: end for

13: for step h = 1, 2, \dots, H do

14: Take action a_h^k \leftarrow \arg\max_{a \in \mathcal{A}} Q_h^k(s_h^k, a). Observe reward r_h^k(s_h^k, a_h^k), get next state s_{h+1}^k.

15: end for
```

Theoretical Results

Theorem 1 (Regret bound for linear MDP). For any $\delta \in (0,1)$ and appropriate β_k, η_k , under the assumption of linear MDP, the regret of Algorithm 1 satisfies

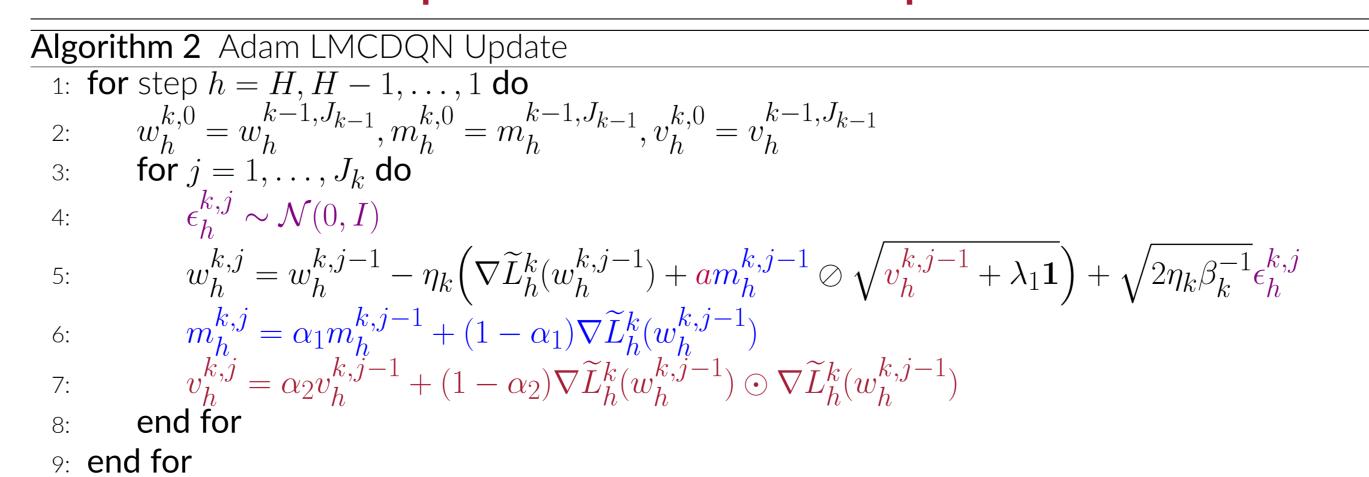
Regret
$$(K) = \widetilde{O}(d^{3/2}H^{3/2}\sqrt{T}),$$

with probability at least $1 - \delta$.

Table 1. Regret upper bound for episodic, non-stationary, linear MDPs.

Algorithm	Regret	Exploration	Computational Efficiency	Scalability
LSVI-UCB [Jin et al., 2020]	$\widetilde{\mathcal{O}}(d^{3/2}H^{3/2}\sqrt{T})$	UCB	Yes	No
OPT-RLSVI [Zanette et al., 2020]	/	TS	Yes	No
ELEANOR [Zanette et al., 2020]	$\widetilde{\mathcal{O}}(dH^{3/2}\sqrt{T})$	Optimism	No	No
LSVI-PHE [Ishfaq et al., 2021]	$\widetilde{\mathcal{O}}(d^{3/2}H^{3/2}\sqrt{T})$	TS	Yes	No
LMC-LSVI (this paper)	$\widetilde{\mathcal{O}}(d^{3/2}H^{3/2}\sqrt{T})$	LMC	Yes	Yes

Deep Q-Network with LMC Exploration



Experiments

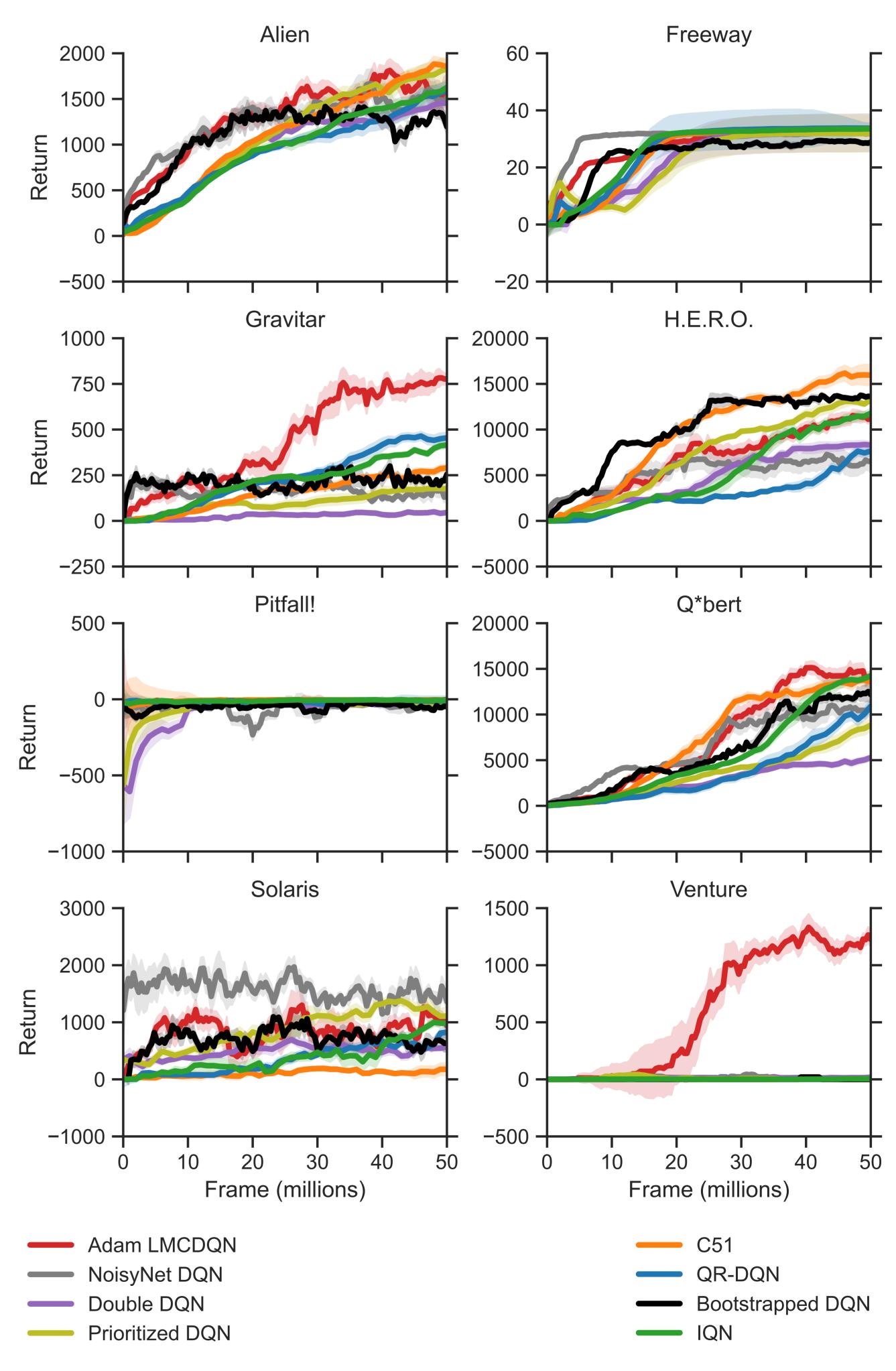


Figure 1. Return curves of various algorithms in Atari tasks over 50 million training frames. Solid lines correspond to the median performance over 5 random seeds, and the shaded areas correspond to 90% confidence interval.