
Provable and Practical: Efficient Exploration in Reinforcement Learning via
Langevin Monte Carlo

Haque Ishfaq ∗ 1 2 �, Qingfeng Lan ∗ 3, Pan Xu 4, Rupam Mahmood 3, Doina Precup 1 2, Anima Anandkumar 5 6,
Kamyar Azizzadenesheli 6

1Mila – Quebec AI Institute 2McGill University 3University of Alberta 4Duke University 5Caltech 6Nvidia

Motivation

Explorations techniques are crucial for an agent to be able to solve novel complex problems.

Thompson sampling based on Laplace approximation is not a good estimation for the

posterior distribution when the value function has more general forms than linearity.

Sampling from a Gaussian distribution with general covariance matrix in high dimensional

problem is computationally inefficient.

Highlights

We propose a practical and efficient online RL algorithm Langevin Monte Carlo

Least-Squares Value Iteration (LMC-LSVI), which only needs to perform noisy gradient

descent updates for exploration.

We theoretically prove that LMC-LSVI achieves a Õ(d3/2H3/2√T ) regret under linear MDP
settings, where d is the dimension of the feature mapping, H is the planning horizon, and T
is the total number of steps.

We further propose, Adam Langevin Monte Carlo Deep Q-Network (Adam LMCDQN), a

preconditioned variant of LMC-LSVI based on the Adam optimizer, which provides

improved empirical performance.

Setting

We consider online finite horizon MDPs (S,A, H,P, r), where S is the state space, A is the
action space, H is the horizon length, P is the state transition kernel and r is the reward
function.

Value function and Action-value function of policy π:

V π
h (x) = Eπ

[
H∑

h′=h

rh′(xh′, ah′)
∣∣xh = x

]
, Qπ

h(x, a) = Eπ

[
H∑

h′=h

rh′(xh′, ah′)
∣∣xh = x, ah = a

]
.

Any algorithm can be measured by it’s regret

Regret(K) =
K∑

k=1

[
V ∗1 (xk

1)− V πk

1 (xk
1)
]
.

Langevin Monte Carlo for Reinforcement Learning

Define a general loss function

Lk
h(wh) =

k−1∑
τ=1

[
rh(xτ

h, aτ
h) + max

a∈A
Qk

h+1(x
τ
h+1, a)−Q(wh; φ(xτ

h, aτ
h))

]2
+ λ‖wh‖2

Langevin Monte Carlo update:

wk+1 = wk − ηk∇L(wk) +
√

2ηkβ−1εk,

It approximately samples from πk ∝ exp (−βLk(w)).
When Q is linear, πk = N (ŵk, β−1Λ−1

k ) where Λk =
∑k−1

τ=1 φ(xτ
h, aτ

h)φ(xτ
h, aτ

h)> + λI .

LMC-LSVI approximately samples from the true posterior distribution.

LMC-LSVI is computationally efficient due to

it only needs to sample from isotropic Gaussian N (0, I).
it only needs to perform noisy gradient descent updates.

Algorithm

Algorithm 1 Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI)

1: Input: step sizes {ηk > 0}k≥1, inverse temperature {βk}k≥1, loss function Lk(w).
2: Initialize w

1,0
h = 0 for h ∈ [H ], J0 = 0.

3: for episode k = 1, 2, . . . , K do

4: Receive the initial state sk
1 .

5: for step h = H, H − 1, . . . , 1 do
6: w

k,0
h = w

k−1,Jk−1
h

7: for j = 1, . . . , Jk do

8: ε
k,j
h ∼ N (0, I)

9: w
k,j
h = w

k,j−1
h − ηk∇Lk

h(wk,j−1
h ) +

√
2ηkβ−1

k ε
k,j
h

10: end for

11: Qk
h(·, ·)← min{Q(wk,Jk

h ; φ(·, ·)), H − h + 1}+
12: end for

13: for step h = 1, 2, . . . , H do

14: Take action ak
h← argmaxa∈AQk

h(sk
h, a). Observe reward rk

h(sk
h, ak

h), get next state sk
h+1.

15: end for

16: end for

Theoretical Results

Theorem 1 (Regret bound for linear MDP). For any δ ∈ (0, 1) and appropriate βk, ηk, under the as-

sumption of linear MDP, the regret of Algorithm 1 satisfies

Regret(K) = Õ(d3/2H3/2√T ),
with probability at least 1− δ.

Table 1. Regret upper bound for episodic, non-stationary, linear MDPs.

Computational
Algorithm Regret Exploration

Efficiency
Scalability

LSVI-UCB [Jin et al., 2020] Õ(d3/2H3/2√T ) UCB Yes No

OPT-RLSVI [Zanette et al., 2020] Õ(d2H2√T ) TS Yes No

ELEANOR [Zanette et al., 2020] Õ(dH3/2√T ) Optimism No No

LSVI-PHE [Ishfaq et al., 2021] Õ(d3/2H3/2√T ) TS Yes No

LMC-LSVI (this paper) Õ(d3/2H3/2√T ) LMC Yes Yes

Deep Q-Network with LMC Exploration

Algorithm 2 Adam LMCDQN Update
1: for step h = H, H − 1, . . . , 1 do
2: w

k,0
h = w

k−1,Jk−1
h , m

k,0
h = m

k−1,Jk−1
h , v

k,0
h = v

k−1,Jk−1
h

3: for j = 1, . . . , Jk do

4: ε
k,j
h ∼ N (0, I)

5: w
k,j
h = w

k,j−1
h − ηk

(
∇L̃k

h(wk,j−1
h ) + am

k,j−1
h �

√
v

k,j−1
h + λ11

)
+
√

2ηkβ−1
k ε

k,j
h

6: m
k,j
h = α1m

k,j−1
h + (1− α1)∇L̃k

h(wk,j−1
h )

7: v
k,j
h = α2v

k,j−1
h + (1− α2)∇L̃k

h(wk,j−1
h )�∇L̃k

h(wk,j−1
h )

8: end for

9: end for

Experiments

500

0

500

1000

1500

2000

R
et

ur
n

Alien

20

0

20

40

60
Freeway

250

0

250

500

750

1000

R
et

ur
n

Gravitar

5000

0

5000

10000

15000

20000
H.E.R.O.

1000

500

0

500

R
et

ur
n

Pitfall!

5000

0

5000

10000

15000

20000
Q*bert

0 10 20 30 40 50
Frame (millions)

1000

0

1000

2000

3000

R
et

ur
n

Solaris

0 10 20 30 40 50
Frame (millions)

500

0

500

1000

1500
Venture

Adam LMCDQN
NoisyNet DQN
Double DQN
Prioritized DQN

C51
QR-DQN
Bootstrapped DQN
IQN

Figure 1. Return curves of various algorithms in Atari tasks over 50 million training frames. Solid lines correspond to

the median performance over 5 random seeds, and the shaded areas correspond to 90% confidence interval.

The Twelfth International Conference on Learning Representations (ICLR 2024) � haque.ishfaq@mail.mcgill.ca


