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Motivation

Explorations techniques are crucial for an agent to be able to solve novel complex problems.

Thompson sampling based on Laplace approximation is not a good estimation for the

posterior distribution when the value function has more general forms than linearity.

Sampling from a Gaussian distribution with general covariance matrix in high dimensional

problem is computationally inefficient.

Highlights

We propose a practical and efficient online RL algorithm Langevin Monte Carlo

Least-Squares Value Iteration (LMC-LSVI), which only needs to perform noisy gradient

descent updates for exploration.

We theoretically prove that LMC-LSVI achieves a Õ(d3/2H3/2√T ) regret under linear MDP
settings, where d is the dimension of the feature mapping, H is the planning horizon, and T
is the total number of steps.

We further propose, Adam Langevin Monte Carlo Deep Q-Network (Adam LMCDQN), a

preconditioned variant of LMC-LSVI based on the Adam optimizer, which provides

improved empirical performance.

Setting

We consider online finite horizon MDPs (S,A, H,P, r), where S is the state space, A is the
action space, H is the horizon length, P is the state transition kernel and r is the reward
function.

Value function and Action-value function of policy π:

V π
h (x) = Eπ

[
H∑

h′=h

rh′(xh′, ah′)
∣∣xh = x

]
, Qπ

h(x, a) = Eπ

[
H∑

h′=h

rh′(xh′, ah′)
∣∣xh = x, ah = a

]
.

Any algorithm can be measured by it’s regret

Regret(K) =
K∑

k=1

[
V ∗1 (xk

1)− V πk

1 (xk
1)
]
.

Langevin Monte Carlo for Reinforcement Learning

Define a general loss function

Lk
h(wh) =

k−1∑
τ=1

[
rh(xτ

h, aτ
h) + max

a∈A
Qk

h+1(x
τ
h+1, a)−Q(wh; φ(xτ

h, aτ
h))

]2
+ λ‖wh‖2

Langevin Monte Carlo update:

wk+1 = wk − ηk∇L(wk) +
√

2ηkβ−1εk,

It approximately samples from πk ∝ exp (−βLk(w)).
When Q is linear, πk = N (ŵk, β−1Λ−1

k ) where Λk =
∑k−1

τ=1 φ(xτ
h, aτ

h)φ(xτ
h, aτ

h)> + λI .

LMC-LSVI approximately samples from the true posterior distribution.

LMC-LSVI is computationally efficient due to

it only needs to sample from isotropic Gaussian N (0, I).
it only needs to perform noisy gradient descent updates.

Algorithm

Algorithm 1 Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI)

1: Input: step sizes {ηk > 0}k≥1, inverse temperature {βk}k≥1, loss function Lk(w).
2: Initialize w

1,0
h = 0 for h ∈ [H ], J0 = 0.

3: for episode k = 1, 2, . . . , K do

4: Receive the initial state sk
1 .

5: for step h = H, H − 1, . . . , 1 do
6: w

k,0
h = w

k−1,Jk−1
h

7: for j = 1, . . . , Jk do

8: ε
k,j
h ∼ N (0, I)

9: w
k,j
h = w

k,j−1
h − ηk∇Lk

h(wk,j−1
h ) +

√
2ηkβ−1

k ε
k,j
h

10: end for

11: Qk
h(·, ·)← min{Q(wk,Jk

h ; φ(·, ·)), H − h + 1}+
12: end for

13: for step h = 1, 2, . . . , H do

14: Take action ak
h← argmaxa∈AQk

h(sk
h, a). Observe reward rk

h(sk
h, ak

h), get next state sk
h+1.

15: end for

16: end for

Theoretical Results

Theorem 1 (Regret bound for linear MDP). For any δ ∈ (0, 1) and appropriate βk, ηk, under the as-

sumption of linear MDP, the regret of Algorithm 1 satisfies

Regret(K) = Õ(d3/2H3/2√T ),
with probability at least 1− δ.

Table 1. Regret upper bound for episodic, non-stationary, linear MDPs.

Computational
Algorithm Regret Exploration

Efficiency
Scalability

LSVI-UCB [Jin et al., 2020] Õ(d3/2H3/2√T ) UCB Yes No

OPT-RLSVI [Zanette et al., 2020] Õ(d2H2√T ) TS Yes No

ELEANOR [Zanette et al., 2020] Õ(dH3/2√T ) Optimism No No

LSVI-PHE [Ishfaq et al., 2021] Õ(d3/2H3/2√T ) TS Yes No

LMC-LSVI (this paper) Õ(d3/2H3/2√T ) LMC Yes Yes

Deep Q-Network with LMC Exploration

Algorithm 2 Adam LMCDQN Update
1: for step h = H, H − 1, . . . , 1 do
2: w

k,0
h = w

k−1,Jk−1
h , m

k,0
h = m

k−1,Jk−1
h , v

k,0
h = v

k−1,Jk−1
h

3: for j = 1, . . . , Jk do

4: ε
k,j
h ∼ N (0, I)

5: w
k,j
h = w

k,j−1
h − ηk

(
∇L̃k

h(wk,j−1
h ) + am

k,j−1
h �

√
v

k,j−1
h + λ11

)
+
√

2ηkβ−1
k ε

k,j
h

6: m
k,j
h = α1m

k,j−1
h + (1− α1)∇L̃k

h(wk,j−1
h )

7: v
k,j
h = α2v

k,j−1
h + (1− α2)∇L̃k

h(wk,j−1
h )�∇L̃k

h(wk,j−1
h )

8: end for

9: end for

Experiments
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Figure 1. Return curves of various algorithms in Atari tasks over 50 million training frames. Solid lines correspond to

the median performance over 5 random seeds, and the shaded areas correspond to 90% confidence interval.
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