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Motivation

= Explorations techniques are crucial for an agent to be able to solve novel complex problems.
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Thompson sampling based on Laplace approximation is not a good estimation for the
posterior distribution when the value function has more general forms than linearity.

Sampling from a Gaussian distribution with general covariance matrix in high dimensional
problem is computationally inefficient.

Highlights

= We propose a practical and efficient online RL algorithm Langevin Monte Carlo
Least-Squares Value Iteration (LMC-LSVI), which only needs to perform noisy gradient
descent updates for exploration.

= We theoretically prove that LMC-LSVI achieves a 5(d3/2H3/2\/T) regret under linear MDP
settings, where d is the dimension of the feature mapping, H is the planning horizon, and T’
s the total number of steps.

= We further propose, Adam Langevin Monte Carlo Deep Q-Network (Adam LMCDQN), a
preconditioned variant of LMC-LSVI| based on the Adam optimizer, which provides
improved empirical performance.

Setting
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Algorithm 1 Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI)
1. Input: step sizes {n; > 0};>1, inverse temperature {8 }x>1, l0ss function Ly (w).
2. Initialize w}b’o =0 forh € |H|, Jy=0.
3. forepisode k=1,2,...,K do
4 Receive the initial state s’f
5 forsteph=H H—1,...,1do
k)O o k—l,Jk_l
o: wh = ’(Uh
7 forj=1,...,J,.do
k.j
8 e, ~ N(0,1)
k.j kji—1 ki—1 1 k.
9: wh] = wh] — nkVL]fl(wh] )+ \/anﬁk Eh]
10: end for "
11: Q]}{L<7 ) — min{Q(wh’ k; ¢<7 ))7 H —h+ 1}+
12: end for
13: forsteph=1,2,...,H do
14; Take action a’fL — argmax e 4 Q’fb(s’;i, a). Observe reward r’fl(s’g, a,]fb), get next state 5§€z+1°
15: end for
16: end for

Theoretical Results

We consider online finite horizon MDPs (S, A, H,P,r), where S is the state space, A is the
action space, H is the horizon length, P is the state transition kernel and r is the reward
function.
Value function and Action-value function of policy =

- _ - _

Vil(z) = Ex

Z r(Ty, apr) ‘ Ty =X

L h/=h

)

Qr(z,a) =E;

Z r(Tp, apr) ‘ T, =x,a, =a|.

L h/=h

Theorem 1 (Regret bound for linear MDP). For any § € (0,1) and appropriate B;., n., under the as-
sumption of linear MDP, the regret of Algorithm 1 satisfies

Regret(K) = O(d*?H?*\/T),

with probability at least 1 — 6.

Table 1. Regret upper bound for episodic, non-stationary, linear MDPs.

Any algorithm can be measured by it's regret

K
Regret(K) = Y [V (a}) - v (ah)].
k=1

Langevin Monte Carlo for Reinforcement Learning

Computational

Define a general loss function
k—1

2
2
Li(wp) = Y |raaf, af) + max Qf (a1, @) = Qlups d(af af)) |+ M|
T=1

Langevin Monte Carlo update:

W1 = Wi — NV L(wg) + \/2%5_1%

= [t approximately samples from 7. o exp (=B L1 (w)).
= When @ is linear, 7. = N (wy, 5_1A];1) where Aj = Zﬁ;% o(x7,ar)p(x], aE)T + M.
LMC-LSVI approximately samples from the true posterior distribution.

LMC-LSVI is computationally efficient due to

= it only needs to sample from isotropic Gaussian N(0, I).
= it only needs to perform noisy gradient descent updates.
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Algorithm Regret Exploration Sfrcienay Scalability
LSVI-UCB [Jin et al., 2020] O(d3?H3/?T)  UCB Yes No
OPT-RLSVI [Zanette et al., 2020]  O(d?H*V/T) TS Yes No
ELEANOR [Zanette et al.,, 2020]  O(dH/%/T)  Optimism No No
LSVI-PHE [Ishfaq et al., 2021]  O(d32H3/2/T) TS Yes No
LMC-LSVI (this paper) O(d32H32T)  LMC Yes Yes
Deep Q-Network with LMC Exploration
Algorithm 2 Adam LMCDQN Update

1. forsteph=H, H—1,...,1do

. w;?O _ wi_l’Jk_l, m/;l,() _ m/Z—LJk—lj ,0}7?0 _ v:_l"]k_l

3: forj=1,...,J;do

4 ey ~ N(0,1)

k.7 k,j—1 T k,g—1 k,j—1 k,g—1 —1 kg

5: wh”7 = wh’] — N (VLIfL(wh’] )+ amh’] %) \/vh’j + )\11) + \/anﬂk 1eh’]

6: mi’y — oqm];b’]_l + (1 — ozl)VZ]fL(wg’]_l)

7: U//?] = ozgvi’]_l + (1 — gg)vi,ﬁ(wﬁj’]‘l) © vi’g(wﬁjﬂ‘l)

8: end for

9. end for
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Figure 1. Return curves of various algorithms in Atari tasks over 50 million training frames. Solid lines correspond to
the median performance over 5 random seeds, and the shaded areas correspond to 90% confidence interval.
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